MOJ ISSN: 2381-182X MOJFPT

Food Processing & Technology
Research Article
Volume 1 Issue 4 - 2015
Planning the Experiment of Treated Melon Slices during the Drying
Radjabov MF1*, Safarov OF2, Djumaniyazov ZB3 and Radjabov JM3
1University of Padua, Department of Industrial Engineering, Italy
2Bukhara State Institute of High Technology, Uzbekistan
3Urgench State University, Department of Chemical Technology, Uzbekistan
Received: October 20, 2015 | Published: November 16, 2015
*Corresponding author: Radjabov MF, University of Padua, Department of Industrial Engineering, Venice Street, 1, 35131, Padua, Italy, Email:
Citation: Radjabov MF, Safarov OF, Djumaniyazov ZB, Radjabov JM (2015) Planning the Experiment of Treated Melon Slices during the Drying. MOJ Food process Technol 1(4): 00019. DOI: 10.15406/mojfpt.2015.01.00019

Abstract

The analysis of planning the experiment of treated melon slices during the drying will help in decision of such matters as: creation of large powered equipments and effective methods of drying, automation of control and regulation of drying process.

Keywords: Melon; Osmotic Drying; Pulp Thickness; Concentration Mode

Introduction

The drying process of melons treated with sugar syrup studied using methods of optimal planning of full factorial experiment [1,2], which is described by the following equation:

y = b 0 + i = 1 n b i x i + i , j = 1 n b i j x i x j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG5b Gaeyypa0JaamOyaKqbaoaaBaaaleaajugWaiaaicdaaSqabaqcLbsa cqGHRaWkjuaGdaaeWbGcbaqcLbsacaWGIbWcdaWgaaqaaKqzadGaam yAaaWcbeaajugibiaadIhajuaGdaWgaaWcbaqcLbsacaWGPbaaleqa aKqzGeGaey4kaSscfa4aaabCaOqaaKqzGeGaamOyaKqbaoaaBaaale aajugWaiaadMgacaWGQbaaleqaaKqzGeGaamiEaSWaaSbaaeaajugW aiaadMgaaSqabaqcLbsacaWG4bqcfa4aaSbaaSqaaKqzadGaamOAaa WcbeaaaeaajugWaiaadMgacaGGSaGaamOAaiabg2da9iaaigdaaSqa aKqzGeGaamOBaaGaeyyeIuoaaSqaaKqzadGaamyAaiabg2da9iaaig daaSqaaKqzadGaamOBaaqcLbsacqGHris5aaaa@6759@

The plan of the experiment (Table 1) is based on the basis of three factors in their natural dimensions (X1- concentration syrup within 70% and 50% -plus -minus x2 - product thickness 30mm and 10mm, plus or minus, x3 - drying method IR and convective convective plus minus.) in terms of dimensionless variables (x1, x2, x3).

The implementation of the plan prepared by the data presented in curves drying kinetics, melons, depending on the concentration (Figure 1), the thickness of the layer (Figure 2), the processing method. According to the results of experiments obtained by drying curves for different melon thermal effects (IR convection, convective).

Drying curves consist of a constant speed period and falling rate drying period. Changing moisture in the first period is given by:

W p c = W н c N τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb WcdaqhaaqaaKqzadGaamiCaaWcbaqcLbmacaWGJbaaaKqzGeGaeyyp a0Jaam4vaSWaa0baaeaajugWaiaad2dbaSqaaKqzadGaam4yaaaaju gibiabgkHiTiaad6eacqGHflY1cqaHepaDlmaaBaaabaqcLbmacaaI Xaaaleqaaaaa@4B03@ Here N= W н c W p τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGob Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaam4vaSWaa0baaeaajugWaiaa d2dbaSqaaKqzadGaam4yaaaajugibiabgkHiTiaadEfalmaaBaaaba qcLbmacaWGWbaaleqaaaGcbaqcLbsacqaHepaDlmaaBaaabaqcLbma caaIXaaaleqaaaaaaaa@47E3@

For the second drying period we have: W k c = W 1 c exp( K τ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb WcdaqhaaqaaKqzadGaam4AaaWcbaqcLbmacaWGJbaaaKqzGeGaeyyp a0Jaam4vaSWaa0baaeaajugWaiaaigdaaSqaaKqzadGaam4yaaaaju gibiGacwgacaGG4bGaaiiCaKqbaoaabmaakeaajugibiabgkHiTiaa dUeacqaHepaDlmaaBaaabaqcLbmacaaIYaaaleqaaaGccaGLOaGaay zkaaaaaa@4E3C@

Results and Discussion

Changes in humidity melon pulp in a sugar syrup is determined by the formula:

W КР =54.873.12 х 1 +1.37 х 2 2.37 х 3 0.625 х 1 х 2 2.87 х 1 х 3 0.375 х 2 х 3 2.12 х 1 х 2 х 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb WcdaWgaaqaaKqzadGaamOgeiaadccbaSqabaqcLbsacqGH9aqpcaaI 1aGaaGinaiaac6cacaaI4aGaaG4naiabgkHiTiaaiodacaGGUaGaaG ymaiaaikdacqGHflY1caWGfrWcdaWgaaqaaKqzadGaaGymaaWcbeaa jugibiabgUcaRiaaigdacaGGUaGaaG4maiaaiEdacqGHflY1caWGfr WcdaWgaaqaaKqzadGaaGOmaaWcbeaajugibiabgkHiTiaaikdacaGG UaGaaG4maiaaiEdacqGHflY1caWGfrWcdaWgaaqaaKqzadGaaG4maa WcbeaajugibiabgkHiTiaaicdacaGGUaGaaGOnaiaaikdacaaI1aGa amyreSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaWGfrWcdaWgaa qaaKqzadGaaGOmaaWcbeaajugibiabgkHiTiaaikdacaGGUaGaaGio aiaaiEdacaWGfrWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiaadw eblmaaBaaabaqcLbmacaaIZaaaleqaaKqzGeGaeyOeI0IaaGimaiaa c6cacaaIZaGaaG4naiaaiwdacaWGfrWcdaWgaaqaaKqzadGaaGOmaa WcbeaajugibiaadweblmaaBaaabaqcLbmacaaIZaaaleqaaKqzGeGa eyOeI0IaaGOmaiaac6cacaaIXaGaaGOmaiaadweblmaaBaaabaqcLb macaaIXaaaleqaaKqzGeGaamyreSWaaSbaaeaajugWaiaaikdaaSqa baqcLbsacaWGfrWcdaWgaaqaaKqzadGaaG4maaWcbeaaaaa@8BE3@

Regression equations ratio drying melons during constant speed in the form

N=0.280.035 x 1 0.025 x 2 +0.0825 x 3 +0.025 x 1 x 2 0.0175 x 1 x 3 0.0175 x 2 x 3 +0.0075 x 1 x 2 x 3 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGob Gaeyypa0JaaGimaiaac6cacaaIYaGaaGioaiabgkHiTiaaicdacaGG UaGaaGimaiaaiodacaaI1aGaamiEaSWaaSbaaeaajugWaiaaigdaaS qabaqcLbsacqGHsislcaaIWaGaaiOlaiaaicdacaaIYaGaaGynaiaa dIhalmaaBaaabaqcLbmacaaIYaaaleqaaKqzGeGaey4kaSIaaGimai aac6cacaaIWaGaaGioaiaaikdacaaI1aGaamiEaSWaaSbaaeaajugW aiaaiodaaSqabaqcLbsacqGHRaWkcaaIWaGaaiOlaiaaicdacaaIYa GaaGynaiaadIhalmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaamiE aSWaaSbaaeaajugWaiaaikdaaSqabaqcLbsacqGHsislcaaIWaGaai OlaiaaicdacaaIXaGaaG4naiaaiwdacaWG4bWcdaWgaaqaaKqzadGa aGymaaWcbeaajugibiaadIhalmaaBaaabaqcLbmacaaIZaaaleqaaK qzGeGaeyOeI0IaaGimaiaac6cacaaIWaGaaGymaiaaiEdacaaI1aGa amiEaSWaaSbaaeaajugWaiaaikdaaSqabaqcLbsacaWG4bWcdaWgaa qaaKqzadGaaG4maaWcbeaajugibiabgUcaRiaaicdacaGGUaGaaGim aiaaicdacaaI3aGaaGynaiaadIhalmaaBaaabaqcLbmacaaIXaaale qaaKqzGeGaamiEaSWaaSbaaeaajugWaiaaikdaaSqabaqcLbsacaWG 4bWcdaWgaaqaaKqzadGaaG4maaWcbeaajugibiabg2da9aaa@8B2D@ =0.280.035 x 1 0.025 x 2 ( 1 x 1 )0.0175 x 3 ( x 1 + x 2 )+0.0075 x 1 x 2 x 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGH9a qpcaaIWaGaaiOlaiaaikdacaaI4aGaeyOeI0IaaGimaiaac6cacaaI WaGaaG4maiaaiwdacaWG4bWcdaWgaaqaaKqzadGaaGymaaWcbeaaju gibiabgkHiTiaaicdacaGGUaGaaGimaiaaikdacaaI1aGaamiEaSWa aSbaaeaajugWaiaaikdaaSqabaqcfa4aaeWaaOqaaKqzGeGaaGymai abgkHiTiaadIhalmaaBaaabaqcLbmacaaIXaaaleqaaaGccaGLOaGa ayzkaaqcLbsacqGHsislcaaIWaGaaiOlaiaaicdacaaIXaGaaG4nai aaiwdacaWG4bWcdaWgaaqaaKqzadGaaG4maaWcbeaajuaGdaqadaGc baqcLbsacaWG4bWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabgU caRiaadIhajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaGccaGLOaGa ayzkaaqcLbsacqGHRaWkcaaIWaGaaiOlaiaaicdacaaIWaGaaG4nai aaiwdacaWG4bWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiaadIha lmaaBaaabaqcLbmacaaIYaaaleqaaKqzGeGaamiEaSWaaSbaaeaaju gWaiaaiodaaSqabaaaaa@7614@

Straighten the curves obtained in the semi-logarithmic anamorphosis to determine the coefficient falling drying rate:

K= In( W n c W p c )In( W k c W p c ) τ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaamysaiaad6gajuaGdaqadaGc baqcLbsacaWGxbWcdaqhaaqaaKqzadGaamOBaaWcbaqcLbmacaWGJb aaaKqzGeGaeyOeI0Iaam4vaSWaa0baaeaajugWaiaadchaaSqaaKqz adGaam4yaaaaaOGaayjkaiaawMcaaKqzGeGaeyOeI0Iaamysaiaad6 gajuaGdaqadaGcbaqcLbsacaWGxbWcdaqhaaqaaKqzadGaam4AaaWc baqcLbmacaWGJbaaaKqzGeGaeyOeI0Iaam4vaSWaa0baaeaajugWai aadchaaSqaaKqzadGaam4yaaaaaOGaayjkaiaawMcaaaqaaKqzGeGa eqiXdq3cdaWgaaqaaKqzadGaaGOmaaWcbeaaaaaaaa@609E@

К= 0.283-0.0584Х1-0.0476Х2+0.0435Х3+0.0166Х1Х2-0.0116Х1Х3-0.0214Х2Х3+0.0008Х1Х2Х3

â„–

Ð¥1

Ð¥2

Ð¥3

Wн.срс

Wкр.срс

t1 (min)

Nср

t2 (min)

Кср.

1

+

+

+

62.4

47

75

0.3

285

0.075

2

+

+

-

69.4

58

60

0.19

420

0.075

3

+

-

+

59.5

50

30

0.32

300

0.118

4

+

-

-

59.5

52

45

0.17

435

0.084

5

-

+

+

72.26

62

30

0.34

330

0.128

6

-

+

-

72.26

58

75

0.19

405

0.094

7

-

-

+

68.8

54

30

0.49

300

0.147

8

-

-

-

68.8

58

45

0.24

435

0.108

Table 1: The plan of full factorial experiment in syrup.

Figure 1: Where 1,2,3 ranks chopped pulp, 4,5,6 rows 2 cm thickness.

Figure 2: The number of the pulp treated with 1.3 to 50% syrup, 2.4 pulp is treated in a series of 70% syrup.

Conclusion

As a result, the planning of the experiment processed melon slices on drying obtained regression equation in times of permanent and falling rates of drying that allows us to choose the most appropriate methods for solving these problems.

References

  1. Grachev Yu (1979) Mathematical methods of planning experimented. Food Industry Handbook, (3rd edn), Moscow, Russia.
  2. Johnson N, Lyon F (1981) Statistics and Planning of experiments in engineering and science. Mir. Moscow.
© 2014-2016 MedCrave Group, All rights reserved. No part of this content may be reproduced or transmitted in any form or by any means as per the standard guidelines of fair use.
Creative Commons License Open Access by MedCrave Group is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://medcraveonline.com
Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version | Opera |Privacy Policy